Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 991
Filtrar
1.
J Cell Biol ; 223(2)2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-38051393

RESUMO

Basement membranes (BMs) are specialized sheets of extracellular matrix that underlie epithelial and endothelial tissues. BMs regulate the traffic of cells and molecules between compartments, and participate in signaling, cell migration, and organogenesis. The dynamics of mammalian BMs, however, are poorly understood, largely due to a lack of models in which core BM components are endogenously labeled. Here, we describe the mTurquoise2-Col4a1 mouse in which we fluorescently tag collagen IV, the main component of BMs. Using an innovative planar-sagittal live imaging technique to visualize the BM of developing skin, we directly observe BM deformation during hair follicle budding and basal progenitor cell divisions. The BM's inherent pliability enables dividing cells to remain attached to and deform the BM, rather than lose adhesion as generally thought. Using FRAP, we show BM collagen IV is extremely stable, even during periods of rapid epidermal growth. These findings demonstrate the utility of the mTurq2-Col4a1 mouse to shed new light on mammalian BM developmental dynamics.


Assuntos
Membrana Basal , Colágeno Tipo IV , Matriz Extracelular , Animais , Camundongos , Membrana Basal/crescimento & desenvolvimento , Colágeno Tipo IV/genética , Colágeno Tipo IV/metabolismo , Matriz Extracelular/metabolismo , Corantes Fluorescentes , Folículo Piloso/crescimento & desenvolvimento , Células-Tronco
2.
Cells ; 11(24)2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36552830

RESUMO

Alopecia is a common medical condition affecting both sexes. Dermal papilla (DP) cells are the primary source of hair regeneration in alopecia patients. Therapeutic applications of extracellular vesicles (EVs) are restricted by low yields, high costs, and their time-consuming collection process. Thus, engineered nanovesicles (eNVs) have emerged as suitable therapeutic biomaterials in translational medicine. We isolated eNVs by the serial extrusion of fibroblasts (FBs) using polycarbonate membrane filters and serial and ultracentrifugation. We studied the internalization, proliferation, and migration of human DP cells in the presence and absence of FB-eNVs. The therapeutic potential of FB-eNVs was studied on ex vivo organ cultures of human hair follicles (HFs) from three human participants. FB-eNVs (2.5, 5, 7.5, and 10 µg/mL) significantly enhanced DP cell proliferation, with the maximum effect observed at 7.5 µg/mL. FB-eNVs (5 and 10 µg/mL) significantly enhanced the migration of DP cells at 36 h. Western blotting results suggested that FB-eNVs contain vascular endothelial growth factor (VEGF)-a. FB-eNV treatment increased the levels of PCNA, pAKT, pERK, and VEGF-receptor-2 (VEGFR2) in DP cells. Moreover, FB-eNVs increased the human HF shaft size in a short duration ex vivo. Altogether, FB-eNVs are promising therapeutic candidates for alopecia.


Assuntos
Folículo Piloso , Feminino , Humanos , Masculino , Alopecia/terapia , Alopecia/metabolismo , Células Cultivadas , Derme/citologia , Fibroblastos , Folículo Piloso/crescimento & desenvolvimento , Fator A de Crescimento do Endotélio Vascular/metabolismo , Nanopartículas , Vesículas Extracelulares
3.
Biomed Pharmacother ; 150: 112996, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35462338

RESUMO

CXCL12 and its receptors, which are highly expressed in the skin, are associated with various cutaneous diseases, including androgenic alopecia. However, their expression and role during the hair cycle are unknown. This study aims to investigate the expression of CXCL12 and its receptor, CXCR4, in the vicinity of hair follicles and their effect on hair growth. CXCL12 was highly expressed in dermal fibroblasts (DFs) and its level was elevated throughout the catagen and telogen phases of the hair cycle. CXCR4 is expressed in the dermal papilla (DP) and outer root sheath (ORS). In hair organ culture, hair loss was induced by recombinant CXCL12 therapy, which delayed the telogen-to-anagen transition and decreased hair length. In contrast, the suppression of CXCL12 using a neutralizing antibody and siRNA triggered the telogen-to-anagen transition and increased hair length in hair organ culture. Neutralization of CXCR7, one of the two receptors for CXCL12, only slightly affected hair growth. However, inhibition of CXCR4, the other receptor for CXCL12, increased hair growth to a considerable extent. In addition, in hair organ culture, the conditioned medium from DFs with CXCL12 siRNA considerably increased the hair length and induced proliferation of DP and ORS cells. CXCL12, through CXCR4 activation, increased STAT3 and STAT5 phosphorylation in DP and ORS cells. In contrast, blocking CXCL12 and CXCR4 decreased the phosphorylation of STAT3 and STAT5. In summary, these findings suggest that CXCL12 inhibits hair growth via the CXCR4/STAT signaling pathway and that CXCL12/CXCR4 pathway inhibitors are a promising treatment option for hair growth.


Assuntos
Quimiocina CXCL12 , Cabelo , Receptores CXCR4 , Alopecia/metabolismo , Quimiocina CXCL12/metabolismo , Cabelo/crescimento & desenvolvimento , Cabelo/metabolismo , Folículo Piloso/crescimento & desenvolvimento , Folículo Piloso/metabolismo , Humanos , RNA Interferente Pequeno/metabolismo , Receptores CXCR4/metabolismo , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais
4.
Gene ; 820: 146257, 2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35143949

RESUMO

Hair follicle development in Tan sheep differs significantly between the birth and Er-mao periods, but the underlying molecular mechanism is still unclear. We profiled the skin transcriptomes of Tan sheep in the birth and Er-mao periods via RNA-seq technology. The Tan sheep examined consisted of three sheep in the birth period and three sheep in the Er-mao period. A total of 364 differentially expressed genes (DEGs) in the skin of Tan sheep between the birth period and the Er-mao period were identified, among which 168 were upregulated and 196 were downregulated. Interestingly, the FOS proto-oncogene (FOS) (fold change = 22.67, P value = 2.15*10^-44) was the most significantly differentially expressed gene. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis found that the FOS gene was significantly enriched in the signaling pathway related to hair follicle development. Immunohistochemical analysis showed that the FOS gene was expressed in the skin of Chinese Tan sheep at the birth and Er-mao periods, with significantly higher expression in the Er-mao period. Our findings suggest that the FOS gene promotes hair follicle development in Tan sheep.


Assuntos
Folículo Piloso/crescimento & desenvolvimento , Folículo Piloso/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ovinos/genética , Pele/metabolismo , Transcriptoma , Animais , China , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Genoma , Masculino , Proteínas Proto-Oncogênicas c-fos/genética , Técnicas de Cultura de Tecidos/métodos
5.
Gene ; 818: 146247, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35085710

RESUMO

As the largest subgroup of intermediate filament proteins, keratins are divided into two types of subfamily. Currently, the molecular mechanism of keratins in several animals has been reported but is limited in yak. Here, 53 different kinds of keratins were identified in the yak genome, including 23 type I and 30 type II keratins. Bioinformatics analysis in this study revealed that multiple phosphorylation sites were identified among all the family members. And the subcellular localization of these proteins was predicted to be in the nucleus, cytoskeleton, and cytoplasm. All keratin family proteins were unstable and the scores of instability coefficient were higher than 40. Phylogenetic analysis showed that high consistency results of the sequence conservation and grouping were found in the genomes of yak, sheep, cattle, mouse, rat, and human. Based on the expression patterns obtained from the transcriptome data, keratin genes (KRTs) were grouped into five clusters, and results also showed that KRTs were highly activated in skin tissues during the hair cycle in yak. Among the five clusters, Cluster II contained the most KRTs, which was the main expression pattern of the yak hair follicle cycle, followed by Cluster III. These results indicated the transition period from telogen to anagen and catagen to telogen were highly dynamic in yak. Gene expression correlation analysis showed that KRTs exhibited a strong correlation (mainly positive correlation) throughout the hair follicle development cycle. And the identification of hub KRTs in specific modules related to hair follicle development in this study was performed using the Weight Gene Co-Expression Network Analysis (WGCNA). Specific modules that include KRTs were darkgreen (KRT40), darkgrey (KRT5), turquoise (KRT1, KRT2, KRT10), bisque4 (KRT4), thistle2 (KRT9, KRT39), and yellowgreen (KRT24). The interaction network showed that these genes were found to be related to the regulation of cell cycle, melanogenesis, hair follicle development, keratinocyte proliferation. Our study provides theoretical support for the study of the evolutionary relationship and molecular mechanism of keratin family in B. grunnien.


Assuntos
Bovinos/genética , Regulação da Expressão Gênica , Genoma , Queratinas/genética , Família Multigênica , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Folículo Piloso/crescimento & desenvolvimento , Queratinas/química , Fosforilação , Filogenia , Estrutura Secundária de Proteína
6.
J Invest Dermatol ; 142(6): 1737-1748.e5, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34922948

RESUMO

Patients suffering from large scars such as burn victims not only encounter aesthetic challenges but also ongoing itching or pain that substantially deteriorates their quality of life. Skin appendages such as hair follicles rarely regenerate within the healing wound. Because they are crucial for skin homeostasis and the lack thereof constitutes one of the main limitations to scarless wound healing, their regeneration represents a major objective for regenerative medicine. Fibroblasts, the main resident cell type of the skin dermis, mediate embryonic hair follicle morphogenesis and are particularly involved in wound healing because they orchestrate extracellular matrix remodeling and collagen deposition in the wound bed. Importantly, dermal fibroblasts originate from two distinct developmental lineages with unique functions that differently mediate the response to epidermal signals such as Hedgehog signaling. In this study, we show that Hedgehog signaling in the reticular fibroblast lineage promotes the initial phase of wound repair, possibly by modulating angiogenesis and fibroblast proliferation, whereas Hedgehog signaling in papillary fibroblasts is essential to induce de novo hair follicle formation within the healing wound.


Assuntos
Folículo Piloso , Proteínas Hedgehog , Regeneração , Transdução de Sinais , Cicatrização , Derme/metabolismo , Fibroblastos/metabolismo , Folículo Piloso/crescimento & desenvolvimento , Proteínas Hedgehog/fisiologia , Humanos , Qualidade de Vida , Regeneração/fisiologia , Cicatrização/fisiologia
7.
PLoS Genet ; 17(12): e1009948, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34905545

RESUMO

Hair follicle stem cells (HFSCs) are multipotent cells that cycle through quiescence and activation to continuously fuel the production of hair follicles. Prior genome mapping studies had shown that tri-methylation of histone H3 at lysine 27 (H3K27me3), the chromatin mark mediated by Polycomb Repressive Complex 2 (PRC2), is dynamic between quiescent and activated HFSCs, suggesting that transcriptional changes associated with H3K27me3 might be critical for proper HFSC function. However, functional in vivo studies elucidating the role of PRC2 in adult HFSCs are lacking. In this study, by using in vivo loss-of-function studies we show that, surprisingly, PRC2 plays a non-instructive role in adult HFSCs and loss of PRC2 in HFSCs does not lead to loss of HFSC quiescence or changes in cell identity. Interestingly, RNA-seq and immunofluorescence analyses of PRC2-null quiescent HFSCs revealed upregulation of genes associated with activated state of HFSCs. Altogether, our findings show that transcriptional program under PRC2 regulation is dispensable for maintaining HFSC quiescence and hair regeneration.


Assuntos
Folículo Piloso/crescimento & desenvolvimento , Cabelo/crescimento & desenvolvimento , Histonas/genética , Complexo Repressor Polycomb 2/genética , Regeneração/genética , Células-Tronco Adultas/metabolismo , Animais , Cromatina/genética , Cabelo/metabolismo , Folículo Piloso/metabolismo , Humanos , Metilação , Camundongos , RNA-Seq , Transdução de Sinais/genética
8.
Genes (Basel) ; 12(12)2021 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-34946875

RESUMO

Hair follicle development and wool shedding in sheep are poorly understood. This study investigated the population structures and genetic differences between sheep with different wool types to identify candidate genes related to these traits. We used Illumina ovine SNP 50K chip genotyping data of 795 sheep populations comprising 27 breeds with two wool types, measuring the population differentiation index (Fst), nucleotide diversity (θπ ratio), and extended haplotype homozygosity among populations (XP-EHH) to detect the selective signatures of hair sheep and fine-wool sheep. The top 5% of the Fst and θπ ratio values, and values of XP-EHH < -2 were considered strongly selected SNP sites. Annotation showed that the PRX, SOX18, TGM3, and TCF3 genes related to hair follicle development and wool shedding were strongly selected. Our results indicated that these methods identified important genes related to hair follicle formation, epidermal differentiation, and hair follicle stem cell development, and provide a meaningful reference for further study on the molecular mechanisms of economically important traits in sheep.


Assuntos
Folículo Piloso/crescimento & desenvolvimento , Ovinos/genética , , Animais , Análise Mutacional de DNA/veterinária , Estudo de Associação Genômica Ampla/veterinária , Técnicas de Genotipagem/veterinária , Anotação de Sequência Molecular , Polimorfismo de Nucleotídeo Único , Análise de Componente Principal , Ovinos/crescimento & desenvolvimento , Carneiro Doméstico , Especificidade da Espécie , Lã/crescimento & desenvolvimento
9.
Int J Mol Sci ; 22(24)2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34948002

RESUMO

Ever since the discoveries that human hair follicles (HFs) display the functional peripheral equivalent of the hypothalamic-pituitary-adrenal axis, exhibit elements of the hypothalamic-pituitary-thyroid axis, and even generate melatonin and prolactin, human hair research has proven to be a treasure chest for the exploration of neurohormone functions. However, growth hormone (GH), one of the dominant neurohormones of human neuroendocrine physiology, remains to be fully explored in this context. This is interesting since it has long been appreciated clinically that excessive GH serum levels induce distinct human skin pathology. Acromegaly, or GH excess, is associated with hypertrichosis, excessive androgen-independent growth of body hair, and hirsutism in females, while dysfunctional GH receptor-mediated signaling (Laron syndrome) is associated with alopecia and prominent HF defects. The outer root sheath keratinocytes have recently been shown to express functional GH receptors. Furthermore, and contrary to its name, recombinant human GH is known to inhibit female human scalp HFs' growth ex vivo, likely via stimulating the expression of the catagen-inducing growth factor, TGF-ß2. These limited available data encourage one to systematically explore the largely uncharted role of GH in human HF biology to uncover nonclassical functions of this core neurohormone in human skin physiology.


Assuntos
Folículo Piloso/crescimento & desenvolvimento , Hormônio do Crescimento Humano/sangue , Pele/metabolismo , Feminino , Folículo Piloso/metabolismo , Hormônio do Crescimento Humano/metabolismo , Humanos , Receptores da Somatotropina/metabolismo
10.
Sci Rep ; 11(1): 20761, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34675331

RESUMO

Hair follicles (HFs) are unique, multi-compartment, mini-organs that cycle through phases of active hair growth and pigmentation (anagen), apoptosis-driven regression (catagen) and relative quiescence (telogen). Anagen HFs have high demands for energy and biosynthesis precursors mainly fulfilled by aerobic glycolysis. Histochemistry reports the outer root sheath (ORS) contains high levels of glycogen. To investigate a functional role for glycogen in the HF we quantified glycogen by Periodic-Acid Schiff (PAS) histomorphometry and colorimetric quantitative assay showing ORS of anagen VI HFs contained high levels of glycogen that decreased in catagen. qPCR and immunofluorescence microscopy showed the ORS expressed all enzymes for glycogen synthesis and metabolism. Using human ORS keratinocytes (ORS-KC) and ex vivo human HF organ culture we showed active glycogen metabolism by nutrient starvation and use of a specific glycogen phosphorylase (PYGL) inhibitor. Glycogen in ORS-KC was significantly increased by incubation with lactate demonstrating a functional Cori cycle. Inhibition of PYGL significantly stimulated the ex vivo growth of HFs and delayed onset of catagen. This study defines translationally relevant and therapeutically targetable new features of HF metabolism showing that human scalp HFs operate an internal Cori cycle, synthesize glycogen in the presence of lactate and modulate their growth via PYGL activity.


Assuntos
Glicogênio Fosforilase Hepática/metabolismo , Glicogênio/metabolismo , Folículo Piloso/crescimento & desenvolvimento , Células Cultivadas , Folículo Piloso/metabolismo , Folículo Piloso/ultraestrutura , Humanos , Insulina/metabolismo , Ácido Láctico/metabolismo , Técnicas de Cultura de Órgãos
11.
Exp Cell Res ; 409(1): 112887, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34678305

RESUMO

Recent studies clearly show that cell-derived extracellular vesicles (EVs, including exosomes) can promote hair growth. However, large-scale production of EVs remains a big hurdle. Recently, extracellular vesicle mimetics (EMs) engineered by extrusion through various membranes are emerging as a complementary approach for large-scale production. In this study, to investigate their ability to induce hair growth, we generated macrophage-engineered EMs (MAC-EMs) that activated the human dermal papilla (DP) cells in vitro. MAC-EMs intradermally injected into the skin of C57BL/6 mice were retained for up to 72 h. Microscopy imaging revealed that MAC-EMs were predominately internalized into hair follicles. The MAC-EMs treatment induced hair regrowth in mice and hair shaft elongation in a human hair follicle, suggesting the potential of MAC-EMs as an alternative to EVs to overcome clinical limitation.


Assuntos
Vesículas Extracelulares/metabolismo , Folículo Piloso/crescimento & desenvolvimento , Folículo Piloso/metabolismo , Cabelo/metabolismo , Macrófagos/metabolismo , Animais , Proliferação de Células/fisiologia , Células Cultivadas , Derme/crescimento & desenvolvimento , Derme/metabolismo , Derme/fisiologia , Exossomos/metabolismo , Cabelo/crescimento & desenvolvimento , Humanos , Macrófagos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células RAW 264.7 , Pele/metabolismo , Via de Sinalização Wnt/fisiologia
12.
Genes (Basel) ; 12(10)2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34680885

RESUMO

Hu sheep (Ovis aries) is a rare white sheep breed, with four different types of lambskin patterns that have different values. However, the genetic mechanisms underlying different types of pattern formation remains unclear. This research aimed to characterize the molecular mechanism of differentially expressed gene PAPPA2 affecting the pattern type of Hu sheep's lambskin at the cellular level. Thus, RT-qPCR, EdU and Cell Cycle detection were used to explore the effect of PAPPA2 and IGFBP5 (a protein that can be hydrolyzed by PAPPA2) on the proliferation of dermal papilla cells (DPCs) after overexpression or interference with PAPPA2 and IGFBP5. The expression level of PAPPA2 in straight DPCs was 4.79 ± 1.84 times higher than curved. Overexpression of PAPPA2 promoted the proliferation of DPCs and also increased the expression of IGFBP5. Conversely, overexpression of IGFBP5 reduced the proliferation of DPCs. However, the proliferation of DPCs was restored by co-overexpression of PAPPA2 and IGFBP5 compared with overexpression of IGFBP5 alone. Thus, PAPPA2 can affect the proliferation of DPCs through regulating IGFBP5 and then participate in lambskin pattern determination. Overall, we preliminarily clarified the critical role played by PAPPA2 during the formation of different pattern in Hu sheep lambskin.


Assuntos
Folículo Piloso/crescimento & desenvolvimento , Proteína 5 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Proteína Plasmática A Associada à Gravidez/genética , Ovinos/genética , Animais , Proliferação de Células/genética , Perfilação da Expressão Gênica , Folículo Piloso/metabolismo , Ovinos/crescimento & desenvolvimento , Carneiro Doméstico/genética
13.
Int J Med Sci ; 18(15): 3498-3505, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34522176

RESUMO

Sox transcription factors play many diverse roles during development, including regulating stem cell states, directing differentiation, and influencing the local chromatin landscape. Sox10 has been implicated in the control of stem/progenitor activity and epithelial-mesenchymal transition, yet it has not been studied in relation to the hair follicle cycle or hair follicle stem cell (HFSC) control. To elucidate the role of Sox10 in hair follicle cycle control, we performed immunohistochemical and immunofluorescence analysis of its expression during hair morphogenesis, the postnatal hair cycle, and the depilation-induced murine hair follicle cycle. During hair follicle morphogenesis, Sox10 was expressed in the hair germ and peg. In telogen, we detected nuclear Sox10 in the hair bulge and germ cell cap, where HFSCs reside, while in anagen and catagen, Sox10 was detected in the epithelial portion, such as the strands of keratinocytes, the outer root sheath (ORS) in anagen, and the regressed epithelial strand of hair follicle in catagen. These results suggest that Sox10 may be involved in early hair follicle morphogenesis and postnatal follicular cycling.


Assuntos
Expressão Gênica/genética , Folículo Piloso/crescimento & desenvolvimento , Queratinócitos/citologia , Fatores de Transcrição SOXE/genética , Células-Tronco/citologia , Animais , Ciclo Celular/genética , Diferenciação Celular/genética , Camundongos , Morfogênese/genética
14.
Dev Cell ; 56(13): 1900-1916.e5, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34197726

RESUMO

Stem cells (SCs) play a key role in homeostasis and repair. While many studies have focused on SC self-renewal and differentiation, little is known regarding the molecular mechanism regulating SC elimination and compensation upon loss. Here, we report that Caspase-9 deletion in hair follicle SCs (HFSCs) attenuates the apoptotic cascade, resulting in significant temporal delays. Surprisingly, Casp9-deficient HFSCs accumulate high levels of cleaved caspase-3 and are improperly cleared due to an essential caspase-3/caspase-9 feedforward loop. These SCs are retained in an apoptotic-engaged state, serving as mitogenic signaling centers by continuously releasing Wnt3 and instructing proliferation. Investigating the underlying mechanism, we reveal a caspase-3/Dusp8/p38 module responsible for Wnt3 induction, which operates in both normal and Casp9-deleted HFSCs. Notably, Casp9-deleted mice display accelerated wound repair and de novo hair follicle regeneration. Taken together, we demonstrate that apoptotic cells represent a dynamic SC niche, from which emanating signals drive SC proliferation and tissue regeneration.


Assuntos
Caspase 3/genética , Caspase 9/genética , Fosfatases de Especificidade Dupla/genética , Regeneração/genética , Proteína Wnt3/genética , Animais , Apoptose/genética , Diferenciação Celular/genética , Proliferação de Células/genética , Autorrenovação Celular/genética , Folículo Piloso/crescimento & desenvolvimento , Folículo Piloso/metabolismo , Sistema de Sinalização das MAP Quinases/genética , Camundongos , Nicho de Células-Tronco/genética , Células-Tronco/metabolismo , Cicatrização/genética
16.
Biosci Rep ; 41(7)2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34196345

RESUMO

BACKGROUND: Alopecia areata is an autoimmune hair loss disease with infiltration of pro-inflammatory cells into hair follicles. The role of Tgr5 in dermatitis has attracted considerable attention. The present study aimed to investigate the effect of Tgr5 in the development of Alopecia areata. METHODS: The study utilized a comparison control group design with four groups of wild-type group, wild-type+INT777 group, Tgr5-/- group, and Tgr5-/-+INT777 group. The mice were treated with INT777 (30 mg/kg/day) or the carrier solution (DMSO) intraperitoneally for 7 weeks, and the back skin was collected and analyzed by histology and immunohistochemistry staining. The lumbar vertebrae 4 has also been analyzed by DXA and Micro-CT. RESULTS: Tgr5-/- mice displayed the decreasingly significant in hair area and length, skin thickness, and the ratio of anagen and telogen, collagen, and mast cell number and loss the bone mass than WT group. After treating with INT777, the appearance of alopecia areata and bone microstructure has improved. Immunohistochemistry and qPCR analysis showed that activation of Tgr5 can down-regulate the express of JAK1, STAT3, IL-6, TNF-α, and VEGF. CONCLUSION: These findings indicate that activation of Tgr5 mediated amelioration of alopecia areata and osteoporosis by down-regulated JAK1-STAT3 signaling pathway.


Assuntos
Alopecia em Áreas/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Densidade Óssea/efeitos dos fármacos , Ácidos Cólicos/farmacologia , Folículo Piloso/efeitos dos fármacos , Vértebras Lombares/efeitos dos fármacos , Osteoporose/tratamento farmacológico , Receptores Acoplados a Proteínas G/agonistas , Alopecia em Áreas/genética , Alopecia em Áreas/metabolismo , Alopecia em Áreas/fisiopatologia , Animais , Modelos Animais de Doenças , Folículo Piloso/crescimento & desenvolvimento , Folículo Piloso/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Janus Quinase 1/genética , Janus Quinase 1/metabolismo , Vértebras Lombares/metabolismo , Vértebras Lombares/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteoporose/genética , Osteoporose/metabolismo , Osteoporose/fisiopatologia , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
17.
Neurochem Int ; 148: 105110, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34166749

RESUMO

As a subjective mood-related disorder with an unclear mechanism, depression has many problems in its diagnosis, which offers great space and value for research. At present, the methods commonly used to judge whether an animal model of depression has been established are mainly by biochemical index detection and behavioral tests, both of which inevitably cause stress in animals. Stress-induced hair growth inhibition has been widely reported in humans and animals. The simplicity of collecting hair samples and the observable state of hair growth has significant advantages; we tried to explore whether the parameters related to hair growth could be used as auxiliary indicators to evaluate a depression model in animals. The length and weight of the hair were calculated. Correlation analysis was conducted between the depressive behavioral results and the glucocorticoid levels in hair and serum. Learned helplessness combined with chronic restraint stress, and chronic unpredictable stress in the animal were detectable by superficial observation, weight ratio, and length of hair, and follicular development scores were significantly reduced compared to the control. The hair growth parameters of rats with depression, the rise in corticosterone, and the corresponding changes in behavioral parameters were significantly correlated. The neurotrophic factors, glucocorticoid-receptor (GR), brain-derived neurotrophic factor (BDNF), fibroblast growth factor 2 (FGF2), and fibroblast growth factor 5 (FGF5), are associated with depression and hair growth. Significant differences were detected between the stress and control groups, suggesting that the mechanism underlying the stress-phenomenon inhibition of hair growth may be related to growth factor mediation.


Assuntos
Depressão/psicologia , Cabelo/crescimento & desenvolvimento , Estresse Psicológico/psicologia , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Fator 5 de Crescimento de Fibroblastos/metabolismo , Glucocorticoides/metabolismo , Cabelo/química , Folículo Piloso/crescimento & desenvolvimento , Desamparo Aprendido , Masculino , Fenótipo , Ratos , Ratos Sprague-Dawley , Receptores de Glucocorticoides/metabolismo , Restrição Física
18.
J Microbiol Biotechnol ; 31(7): 933-941, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34099599

RESUMO

Ginsenoside Rg4 is a rare ginsenoside that is naturally found in ginseng, and exhibits a wide range of biological activities including antioxidant and anti-inflammatory properties in several cell types. The purpose of this study was to use an in vivo model of hair follicle (HF)-mimic based on a human dermal papilla (DP) spheroid system prepared by three-dimensional (3D) culture and to investigate the effect of Rg4 on the hair-inductive properties of DP cells. Treatment of the DP spheroids with Rg4 (20 to 50 µg/ml) significantly increased the viability and size of the DP spheres in a dose-dependent manner. Rg4 also increased the mRNA and protein expression of DP signature genes that are related to hair growth including ALP, BMP2, and VCAN in the DP spheres. Analysis of the signaling molecules and luciferase reporter assays further revealed that Rg4 induces the activation of phosphoinositide 3-kinase (PI3K)/AKT and the inhibitory phosphorylation of GSK3ß, which activates the WNT/ß-catenin signaling pathway. These results correlated with not only the increased nuclear translocation of ß-catenin following the treatment of the DP spheres with Rg4 but also the significant elevation of mRNA expression of the downstream target genes of the WNT/ß-catenin pathway including WNT5A, ß-catenin, and LEF1. In conclusion, these results demonstrated that ginsenoside Rg4 promotes the hair-inductive properties of DP cells by activating the AKT/GSK3ß/ß-catenin signaling pathway in DP spheres, suggesting that Rg4 could be a potential natural therapy for hair growth.


Assuntos
Derme/efeitos dos fármacos , Ginsenosídeos/farmacologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Cabelo/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , beta Catenina/metabolismo , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Sobrevivência Celular/efeitos dos fármacos , Derme/citologia , Derme/metabolismo , Cabelo/crescimento & desenvolvimento , Folículo Piloso/citologia , Folículo Piloso/efeitos dos fármacos , Folículo Piloso/crescimento & desenvolvimento , Folículo Piloso/metabolismo , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Esferoides Celulares , Proteínas Wnt/metabolismo
19.
J Dermatol Sci ; 102(2): 101-108, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33933312

RESUMO

BACKGROUND: REGγ acts as a proteasome activating factor mediating proteasome degradation of substrate proteins in an ATP and ubiquitination independent manner and also as an important regulator of cell cycle, proliferation and apoptosis. Hair cycle involves dynamic, continuous morphological changes of three stages (anagen, catagen and telogen). OBJECTIVE: The function of REGγ in hair cycling is still unclear. METHODS: Here, we used REGγ knockout 293 T cells, inducible 293WT and 293N151Y cell, REGγ knockout mice to identify the novel molecular mechanism of REGγ in regulating hair follicle stem cells. RESULTS: In the present study, we found that REGγ deletion markedly delayed the transition of hair follicles from telogen to anagen and hair regeneration in mice. We also observed significant decrease of hair follicle stem cell number, stem-like property and proliferation ability. Interestingly, the results from real-time PCR, FACS, Western Blot and immunofluorescent analysis showed that REGγ deletion could greatly downregulate Lgr5 expression in the hair follicles. Meanwhile, REGγ was demonstrated to directly interact with LHX2 and promotes its degradation. Importantly, REGγ specific deletion in Lgr5+ stem cells induced the marked delay of hair regeneration after depilation. CONCLUSION: These data together indicate that REGγ was a new mediator of Lgr5 expression in hair follicle at least partly by promoting the degradation of its suppressive transcription factor LHX2. It seemed that REGγ regulated hair anagen entry and hair regrowth by activating Lgr5 positive hair follicle stem cells.


Assuntos
Autoantígenos/metabolismo , Folículo Piloso/crescimento & desenvolvimento , Proteínas com Homeodomínio LIM/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Células-Tronco/fisiologia , Fatores de Transcrição/metabolismo , Animais , Apoptose/fisiologia , Autoantígenos/genética , Proliferação de Células/fisiologia , Técnicas de Silenciamento de Genes , Células HEK293 , Folículo Piloso/metabolismo , Humanos , Queratinócitos , Masculino , Camundongos , Camundongos Knockout , Cultura Primária de Células , Complexo de Endopeptidases do Proteassoma/genética , Proteólise , Receptores Acoplados a Proteínas G/metabolismo , Regeneração/fisiologia , Regulação para Cima/fisiologia
20.
Int J Mol Sci ; 22(9)2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33946876

RESUMO

The hair follicle dermal papilla is critical for hair generation and de novo regeneration. When cultured in vitro, dermal papilla cells from different species demonstrate two distinguishable growth patterns under the conventional culture condition: a self-aggregative three dimensional spheroidal (3D) cell pattern and a two dimensional (2D) monolayer cell pattern, correlating with different hair inducing properties. Whether the loss of self-aggregative behavior relates to species-specific differences or the improper culture condition remains unclear. Can the fixed 2D patterned dermal papilla cells recover the self-aggregative behavior and 3D pattern also remains undetected. Here, we successfully constructed the two growth patterns using sika deer (Cervus nippon) dermal papilla cells and proved it was the culture condition that determined the dermal papilla growth pattern. The two growth patterns could transit mutually as the culture condition was exchanged. The fixed 2D patterned sika deer dermal papilla cells could recover the self-aggregative behavior and transit back to 3D pattern, accompanied by the restoration of hair inducing capability when the culture condition was changed. In addition, the global gene expressions during the transition from 2D pattern to 3D pattern were compared to detect the potential regulating genes and pathways involved in the recovery of 3D pattern and hair inducing capability.


Assuntos
Cervos/anatomia & histologia , Folículo Piloso/citologia , Antígeno AC133/biossíntese , Antígeno AC133/genética , Fosfatase Alcalina/biossíntese , Fosfatase Alcalina/genética , Animais , Biomarcadores , Agregação Celular , Técnicas de Cultura de Células , Divisão Celular , Células Cultivadas , Cervos/genética , Regulação da Expressão Gênica , Ontologia Genética , Cabelo , Folículo Piloso/crescimento & desenvolvimento , Folículo Piloso/metabolismo , Mesoderma/citologia , Fatores de Transcrição SOXB1/biossíntese , Fatores de Transcrição SOXB1/genética , Especificidade da Espécie , Esferoides Celulares/citologia , Esferoides Celulares/metabolismo , Transcriptoma , Versicanas/biossíntese , Versicanas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...